Proceeding

International Conference
Strengthening Indonesian Agribusiness:
Rural Development and Global Market Linkages

IPB International Convention Center, Bogor - Indonesia,
25 - 26 April 2016

Editors:
Amzul Rifin
Meine Pieter van Dijk
Diederik P. de Boer
Huub Mudde
Johan van Rooyen
Siti Jahroh

Organized by
Department of Agribusiness, Faculty of Economics and Management,
Bogor Agricultural University - Indonesia
in collaboration with
NICHE NUFFIC Programme - The Netherlands

Financially supported by:
PROCEEDING

International Conference
Strengthening Indonesian Agribusiness:
Rural Development and Global Market Linkages

IPB International Convention Center, Bogor - Indonesia,
25 - 26 April 2016

Organized by
Department of Agribusiness, Faculty of Economics and Management,
Bogor Agricultural University - Indonesia
in collaboration with
NICHE NUFFIC Programme - The Netherlands

Editors:
Amzul Rifin
Meine Pieter van Dijk
Diederik P. de Boer
Huub Mudde
Johan van Rooyen
Siti Jahroh
PROCEEDING
International Conference Strengthening Indonesian Agribusiness:
Rural Development and Global Market Linkages
IPB International Convention Center, Bogor - Indonesia, 25 - 26 April 2016

Editors :
- Amzul Rifin
- Meine Pieter van Dijk
- Diederik P. de Boer
- Huub Mudde
- Johan van Rooyen
- Siti Jahroh

Technical Editors :
- Triana Gita Dewi
- Muhammad Rizqi Mubarok
- Hamid Jamaludin Muhrim

Cover Design :
- Hamid Jamaludin Muhrim

Published By :
Department of Agribusiness, FEM-IPB and NICHE Programme
Campus of IPB Dramaga, Jl. Kamper Wing 4 Level 5 Bogor, West Java - Indonesia 16680
Phone/Fax : +62-251-8629654
e-mail : depagribisnis@yahoo.com, dep-agribisnis@apps.ipb.ac.id
Website : http://agribisnis.ipb.ac.id

© Department of Agribusiness, FEM-IPB and NICHE Programme (2016)

ISBN : 978-602-14623-4-8
FOREWORD

With deep satisfaction I was writing this foreword to the Proceedings of International Conference with the theme of Strengthening Indonesian Agribusiness: Rural Development and Global Market Linkages held in IPB International Convention Center, Bogor Agricultural University, Indonesia, on 25 -26 April 2016. This conference marked the end of the NICHE Project which started in 2011.

Diverse papers and discussion represent the thinking and experiences of mixed and various scholars of their particular interest and fields. Of valuable was the presence of prominent scholars who brought their newest findings out of their research works. Their contributions helped to make the conference as outstanding as it has been.

Special thanks are due to the invited speakers Prof. Meine Pieter van Dijk (Maastricht School of Management (MSM) Netherlands), Dr. Daniel Sherrard (Earth University, Costarica), Dr. Nunung Kusnadi (Agribusiness Department, Bogor Agricultural University), Oliver Olson, MBA (Director Global Education Programs at Maastricht School of Management), Huub Mudde, M.Sc (Agricultural Counselor, Embassy of the Kingdom of the Netherlands), Prof. Johan van Rooyen (Agricultural economics at Stellenbosch Univeristy, South Africa), Ir. Wildan Mustofa, MM (Hikmah Farm, Pangalengan West Java), Joshua Bray, M.Sc (Sydney University, Australia) and Dr. Nerlita M. Manalili (Managing director NEXUS Agribusiness Solutions, Philippines and SEARCA Consultant Agribusiness). We would like also to thank the editor of the proceeding, Dr. Amzul Rifin, Prof. Meine Pieter van Dijk, Diederik P. de Boer, PhD, Huub Mudde, M.Sc, Prof. Johan van Rooyen, Siti Jahroh. Phd, Triana Gita Dewi, M.Sc, M. Rizqy Mubarok, M.Si, and Hamid Jamaludin, SE for the layout of the proceeding.

It is my hope that this proceeding will contribute to the development of agriculture and rural development in the world and in Indonesia especially.

Dr. Dwi Rachmina
Head of
Department of Agribusiness
Faculty of Economics and Management
Bogor Agricultural University
Foreword
LIST OF CONTENT

FULL PAPER AND ABSTRACT OF INVITED PAPER

The ABC of Agricultural Global Value Chains and the XYZ of Value Chain Upgrading, Focusing on Agribusiness Development In Indonesia
Meine Pieter van Dijk
1

The Indonesian Cacao Value Chain, What We Know and What We Need to Know From an Agro-Business Perspective, Challenges & Opportunities for a Local Cacao Value Chain in Indonesia
Meine Pieter van Dijk
13

The Agribusiness Value Chain and Black Economic Empowerment in South African Agriculture
Johan van Rooyen
23

Entrepreneurship Education in Agriculture: The EARTH University Approach
Irene Alvarado Van der Laat and Daniel Sherrard
25

AGRIBUSINESS AND ENTREPRENEURSHIP

Staple Food Development Model of Poor Households in Central Java
Erlyna Wida R., and Rhina Uchyani F.
27

The Agribusiness Dynamics of Indonesian Cigarettes and Its Implication on Tobacco and Clove Market
Antik Suprihanti
33

Grand Design of Corporate Social Responsibility of the Indonesian Palm Oil Industry: Stakeholder Theory Approach
Said Achmad Kabiru Rafie
43

Do Supermarkets Compete to Traditional Markets? The Case Study of Surakarta City, Central Java Province, Indonesia
Sahara, and Hardyani Sasikirana
53

Marketing Strategy Based on Entrepreneurial Marketing for Different Types of Small and Medium Enterprises (SMEs)
Ma’mun Sarma
61

The Financial Pattern of Mangosteen Farm in Tasikmalaya Distric
Eti Suminartika
69

The Effect of Estate-Crop Fund on Indonesia’s Crude Palm Oil Export Competitiveness
Immanuel, Muhammad Khaliqi, and Achmad Amiruddin
77

Strengthening The Economy of Rural Community in Buffer Zone of Baluran National Park, East Java
Luh Putu Suciati, and Yeni Anggraini
87

Strategy Formation to Strengthen Indonesian Agribusiness Honeybees
Eddy Chiljon Papilaya and Jan Edmond Papilaya
97
Development Strategy of Pumpkin Dumplings (A Case Study in Berkah Abadi SME, Pacitan District)

Nuning Setyowati 105

FARM MANAGEMENT

Determinants of Farmers in Occurrence of Paddy Field Conversion to Fish Farming in East Buay Madang, District of East Oku Regency

Fifian, Andy Mulyana, Najib Asmani, and Yunita 115

Land Rent Analysis and Alternatives to Control Paddy Land Conversion into Palm Oil Plantation in East Tanjung Jabung Regency

Asnelly R. Daulay, Eka Intan K. P., Baba Barus, and Bambang P. N. 123

The Perception of Conventional Farmer and the Effect of Socio-Economic Background on the Intention to Adopt Organic Rice Farming

Ashari, Juwaidah Sharifuddin, Zainal Abidin Mohammed, and Rika Terano 129

Risk Reduction Strategy by Using Rain Shelter on Chili Pepper Agribusiness

Sri Ayu Andayani, Lies Sulistyowati, and Tomy Perdana 141

Young Coffee Farmers in Coffee Business, Constraints and its Solving (Case of Nagori Sait Buttu Saribu, Pamatang Sidamanik District, Simalungun Regency, North Sumatra)

Rokhani, Titik Sumarti, Didin S. Damanhuri, and Ekawati Sri Wahyuni 147

Acreage Response of Rice in Jambi Province

Edison 155

Land Conversion in Central Java

Didik Widiyantono, Istiko Agus Wicaksono, and Fatkhiyah Rohmah 161

Implementation of Price Regulation on Salt Smallholder

Ihsannudin, Divi R. Hidayati, Slamet Widodo, and Aminah H.M. Ariyani 167

Effectiveness and Efficiency of Direct Application of Phosphate Rock on Maize Farming

Irawan, Husnain, and Muhtar 173

Analysis of Added Value of Coffee in Lampung Province

Nia Rosiana, Rita Nurmalina, and Alfa Chasanah 179

Feasibility Study of Bamboo Forest Plantation Forest in the Forest Community in Bali: Marketing Analysis and Development Approach

Husnul Khotimah, Dhany Yuniati, and Irma Yeni 185

Farming Household Characteristics for Raising Brahman Cattle in Lampung and East Java, Indonesia

Dian Andrayani, and A. Priyanti 203

Assessing Rice Self-Sufficiency Regimes from Political Economics Perspective: A Theoretical Framework

Sri Nuryanti 213
VALUE CHAIN ANALYSIS

To Whom Farmer Must Sell Their Mangosteen, Broker (Ijon) or Exporter?

Reny Andriyanty, and Linar Humaira
219

The Financial Feasibility of Coffee Farm Technologies in Lampung Province

Anna Fariyanti, Tintin Sarianti and Triana Gita Dewi
227

Assessment of Beef Distribution Channel Performance in Purworejo Regency

Dyah Panuntun Utami, Zulfanita, and Faruq Iskandar
235

Marketing Analysis of Broccoli in Lembang West Java Indonesia (Case Study: CV. Yan’s Fruits and Vegetables, Lembang, West Java)

Clara Yolandika, Rita Nurmalina, and Suharno
241

Vertical Market Integration Performance of Indonesian Rice Market Chain

Husnul Khotimah, Stefan Von Cramon-Taubadel, Suharno, and Rita Nurmalina
251

The Degree of Integration of Coffee Supply Chain in Lampung Province

Rita Nurmalina, Prisca Nurmala Sari, and Anggita Tresliyana Suryana
265

Marketing Channel Analysis of Marine Capture in Rembang Regency, Central Java Province

Jaka Sulaksana
275

RURAL ECONOMY

Improving Oil Palm Smallholders Participation in Global Market to Strengthening Indonesian Agribusiness Rural Development

Diana Chalil, and Riantri Barus
283

Analysis of Household Income Communities Living in The Surrounding of Sabangau National Park in Palangka Raya Central Kalimantan

Suharno, and Trisna Anggreini
295

The Economic Analysis of Coconut Farmer Households in Indragiri Hilir Municipality, Riau Province

Djaimi Bakce
301

Group Strengthening Strategy in Farming Group Empowerment

Achmad Faqih, and Nurul Atikah Fauzi
313

The Impact of Rice Price on Coconut Farmer Household Consumption in Indragiri Hilir Regency

Elinur, and Asrol
323

Dynamic System Simulation Model of the Non Hulled Paddy Price and Farm Income of The Rice Peasants In The District of Indramayu, West Java

Ivonne Ayesha, Tuhpawana Priatna Sendjaja, Muhammad Tasrif, and Tomy Perdana
331

Determinants Factors of Paddy Field Conversion in Java 1995-2013

Wina Dwi Febrina, D.S. Priyarsono, and Noer Azam Achsani
337
Institutional Arrangement of Irrigation Water Management in Rural Area (A Case Study of a WUA in Central Java, Indonesia)
Mohammad Rondhi, Yasuhiro Mori, and Takumi Kondo 349

Utilization of Biogas from Waste of Livestock Manure for Rural Economic Development in West Java
Endro Gunawan 357

Mapping the Issues on Agriculture Extension: A Tale of Two Districts in West Java
Sri Fatimah, Maman Haeruman, and Lies Sulistyowati 365

Mango Sellers in Bandung City: A Perspective of Communication Ethnography
Sri Fatimah, Yosini Deliana, and Anne Charina 371

Problem Structuring Method Development Based on Cognitive Map Approach and Soft System Method and Its Application in Koperasi Peternakan Bandung Selatan (KPBS Pangalengan)
Mentiana Sibarani 377

ANNEX 1 - KEYNOTE SPEAKER PRESENTATION
ANNEX 2 - INVITED SPEAKER PRESENTATION
ANNEX 3 - CONFERENCE PROGRAM
ANNEX 4 - PARALLEL SESSION SCHEDULE
ANNEX 5 - ATTENDANCE LIST
RISK REDUCTION STRATEGY BY USING RAIN SHELTER ON CHILI PEPPER AGRIBUSINESS

Sri Ayu Andayani¹, Lies Sulistyowati², and Tomy Perdana²

¹Lecturer of Majalengka University
²Lecturer of Padjadjaran University
e-mail: ¹sri.ayuandayani@yahoo.com

ABSTRACT

The plenty of red Chili demand pull up farmers to continue production of red chili and adjust it with industry demand specification. The supply of red chili will be guaranteed if the production is going well. In fact, the production process frequently faces the climate disturbance therefore it was indicated that there is a risk in production, it deteriorated quality and quantity of red chili. Garut regency is one of the center of production of red chili in West Java, but it is still threatened by risk production. According to that information, it is needed to study the elements and link period pattern of risk production then it can be suggested the policy design in mitigating the risk production. This study used dynamic system approach. The results showed that risk production occurred when there was a death structure in growing and production period which is caused by climate anomaly. The simulation result showed that us period of technology rain shelter as one suggested design to mitigate the risk, not only can reduce the mortality but also to promote the grade product quality.

Keywords: red chili, Production risk, mitigation

INTRODUCTION

Red chili is one of horticultural product which has high economic value and demand. Red chili demand consists of two kinds, namely direct consumption and agroindustry. The rate consumption of red chili is predicted to increase every year in line with the increase of people quantity. However, from 2004-2010, production of red chili fluctuated, in general decrease with the aver period of decrease 1 percent per year (BPS, 2010). The climate change has caused a very high of rain and pest disease and predicted as the reason of production decreasing of red chili. It can be said that red chili farming faced the risk, risk production. The risk of the variety of outcomes that may occur during a specific period (Roumasset et al., 1979). There was also said that the risk is the uncertainty which may give rise to lose event (Kountur, 2004). It can be concluded that the risk is the uncertainty over its occurrence and can cause harm. By Harwood et al., 1999 one of risk faced by farmers is the risk of production which is common to commodity red chili commodity. Risk production is the risk which is originated from the failure of harvesting, low of productivity, the broken product which is caused by pest disease attack, climate change and human error (Harwood et al., 1999).

Garut regency is one area which has a high productivity of red chili and becomes a center of red chili in West Java. One of local champion which is recommended by Agricultural and Horticulture office in Garut Regency is Cooperative of Cabai Garut Inti (Cagarit). This cooperative covered eight sub-districts namely Cigedug, Pasirwangi, Cilawu, Sukaresmi, Bayongbong, Cisurupan, Cikajang and Sucinaraja. However, in fact, Cagarit cooperative still has a threat, the lack of red chili production to meet the demand of red chili of industry company Heinz ABC which has a partnership contract since 2011. The risk production became main factor limited production. As far, the technology which can handle pest disease and climate change have not been found, consequently, the continuity of supply for industry demand also have not been found. Production technology must be applied in line with production man periodment such as operation standard procedure (SOP) of farming which is suitable with the local condition and necessity of market (Perdana et al., 2013).

Based on those problems, it is needed one study on learning of the forming elements and link period pattern of production risk and to
study a complexity of the interaction of various involved components then suggested the strategy policy proposal in mitigating that risk.

RESEARCH METHODS

The research method used is a case study to learn deeply on production risk and its link period pattern. This study took Cooperative Cagarit as location and unit analysis in Garut Regency which has a contract of partnership with agroindustry firm. However the need of demand has not been known.

In terms of understanding complexity and dynamics of production risk, this study used dynamics system approach. Dynamics system is one of a method which has power to get deeply understanding on complex and resistance dynamics situation of policy (Sterman, 2000). Data was obtained from searching on various sources, such as research journals, reports and many others.

Data in numeric, mental model and written have been processed then being a model in this research by using soft system Vensim DSS. The modelling step consists of some steps: learning and studying system, developing level and rate of the diagram in the system, developing model in a system, testing model assumption, conducting simulation and releasing policy recommendation (Sterman, 2000).

RESULTS AND DISCUSSION

Cooperation contract has been dealt between cooperative as red chili farmers with Heinz ABC Company as processor industry. Based on this contract, cooperative must meet the needs and keep the commitment. To keep commitment and contract, before it happened, cooperative has discussed with the farmer in groups on continuity of supply and capacity of each group.

In production planning, cooperative predicted crop pattern based on the previous

Figure 1. Sub Model Diagram of Production Risk

Risk Reduction Strategy by Using Rain Shelter...
Sri Ayu Andayani, Lies Sulistyowati, and Tomy Perdana
experience, but it was not always appropriate exactly. Input supply also experienced the same condition, as same as financing problem. In fact, red chili farming is facing many problems. The failure of production due to climate change also becomes one of the problems. All of these problems are the production risk. All of phenomenon’s which describe production risk and link period of variables and elements inside can be figured in a model which consists of some of sub-models of the flow chart.

SUB MODEL OF PRODUCTION RISK

One factor which determines the supply of red chili is farming process. In this sub model, it is seen that starting from growth period up to production period was indicated there was a risk. In growth period, it is formed the death structure due to an effect of climate anomaly to the plant. The appropriate rainfall for red chili is 600 – 1200 mm/year then if there is a lack or excess of it, it can make a death or broken. In production, 50 percent of red chili plant face a death due to fusarium disease or anthrax nose.

Red chili plant is very delicate in terms of weather effect and disease. Some of the alternative ways have already been tried but not optimally yet because of limited means. Sub model of production risk is showed in Figure 1. Physics structures and decision in this sub model are represented by following a formula (formula 1-2). Red chili production during summer season or wet season with possibility condition such us the high temperature, strong winds and pest disease attack will reduce the production result of red chili significantly. One of the important factors that affect the development of red chili farming is through production technology in facing various extreme conditions. Figure 2 describes that it can guarantee the continuity of red chili production in quantity, quality and stable price. One of the technologies is rain shelter technology. Rain shelter is one innovation of canopy technology to protect the plant from heavy rainfall. Rain shelter has a function to minimize the plant from the puddle and it has an effect on the production (Palada et al., 2012).

Rain shelter effect is wished to mitigate the production risk in wet season so the rainfall can not fall directly to the plant to prevent root rot. Figure 3 shows that the use of rain shelter also can affect the product quality of red chili. The use of rain shelter will affect the financing of red chili farming and it has an impact on strengthening the

Figure 2. Sub Model of Production Rain Shelter Scenario

Sri Ayu Andayani, Lies Sulistyowati, and Tomy Perdana
Risk Reduction Strategy by Using Rain Shelter...
Risk Reduction Strategy by Using Rain Shelter… Sri Ayu Andayani, Lies Sulistyowati, and Tomy Perdana

The impact of use of rain shelter...
of the product. Simulation result explained that at initial condition, sortation on grade increased fastly due to planting of red chili more in initial step. Then, it slowly gets stable as well as off grade. It is indicated clearly that the impact of rain shelter technology can give the positive impact effectively in reducing the death of plan and promoting the quality on grade.

CONCLUSIONS AND RECOMMENDATIONS

CONCLUSIONS
1. The formation of elements and linkage pattern of production risk was seen from the period of growth up to production of red chili. It was indicated that there was a risk of death fraction, as a result of production risk will have an impact on the availability of red chili in the market.

2. In an effort of production risk management, rain shelter technology was applied. The application of this technology has a positive impact on the quantity and promoted the quality on grade in sortation.

RECOMMENDATIONS
1. In an effort to apply risk management policy, it is required to strengthen an institution inside, cooperative. It becomes pre-condition in assessment of implementation of policy across training, more intensive in controlling on management system which can promote the motivation to cooperate and participate.

2. In an effort of applying, rainshelter canopy technology for red chili farming needs huge capital, which can be developed rain shelter from local equipment, such as bamboo as a substitution for iron.

REFERENCES
Palada M.C. 2012. Rainshelter for Tomato Production in the Hot-Wet Season, AVRDC-The World Vegetable Center
Perdana. 2012. Modul Sistem Agribisnis, Program Studi Agribisnis, Fakultas Pertanian, Universitas Padjadjaran, Bandung
Roumasset, Boussard, Singh. 1979. Risk uncertainty and Agricultural Development, New York, USA