Penerapan Metode Eselon Baris Tereduksi pada Rekayasa Volume Lalu Lintas

Tetty Natalia Sipayung, Inne Kristina Gulo

Abstract


Traffic congestion is one of the problems of land transportation and is the center of attention, especially for traffic users in big cities. Through a literature study using a descriptive method, a study was carried out with the aim of estimating the traffic volume at each intersection of two groups of connected and intersecting one-way roads. The initial step of this study is to conduct a literature review and provide some of the necessary definitions. Second, make the formulation of traffic volume engineering problems. Third, determine the variables and make assumptions. There are four variables involved. Fourth, form a mathematical model. The resulting model is in the form of a system of non-homogeneous linear equations. Fifth, determine the solution and interpretation of the model. The model is interpreted in the form of an enlarged matrix and through the application of the reduced row echelon method the result is that the system is consistent and has a rank of three. Sixth, implementation with the help of MATLAB. Seventh, drawing conclusions. Through this study, it was concluded that the volume of the number of vehicles in the three lanes depends on one other lane.

Full Text:

PDF

References


Afrin, T., & Yodo, N. (2020). A Survey of Road Traffic Congestion Measures Towards a Sustainable and Resilient Transportation System. Sustainability (Switzerland), 12(11), 1–23. https://doi.org/10.3390/su12114660

Ali, F., Ali, A., Imran, M., Naqvi, R. A., Siddiqi, M. H., & Kwak, K. S. (2021). Traffic Accident Detection and Condition Analysis Based on Social Networking Data. Accident Analysis and Prevention, 151, 1–16. https://doi.org/10.1016/j.aap.2021.105973

Anam, K., & Arnas, Y. (2019). Metoda Cramer Untuk Solusi Analisa Rangkaian Listrik Menggunakan Scilab. Jurnal Ilmiah Aviasi Langit Biru, 12(1), 61–68.

Anton, H., & Rorres, C. (2014). Elementary Linear Algebra Applications Version (11th Edtion). Wiley.

Bazzan, A. L. C., & Klügl, F. (2014). A Review on Agent-Based Technology for Traffic and Transportation. Dalam Knowledge Engineering Review (Vol. 29, Nomor 3, hlm. 375–403). Cambridge University Press. https://doi.org/10.1017/S0269888913000118

Bucsuházy, K., Matuchová, E., Zůvala, R., Moravcová, P., Kostíková, M., & Mikulec, R. (2020). Human Factors Contributing to the Road Traffic Accident Occurrence. Transportation Research Procedia, 45, 555–561. https://doi.org/10.1016/j.trpro.2020.03.057

Chen, Q., Song, X., Yamada, H., & Shibasaki, R. (2016). Learning Deep Representation from Big and Heterogeneous Data for Traffic Accident Inference. Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence, 338–344. www.aaai.org

Chen, W., Guo, F., & Wang, F. Y. (2015). A Survey of Traffic Data Visualization. IEEE Transactions on Intelligent Transportation Systems, 16(6), 2970–2984. https://doi.org/10.1109/TITS.2015.2436897

Choi, S. H., Gu, J. H., & Kang, D. H. (2016). Analysis of Traffic Accident-Related Facial Trauma. Journal of Craniofacial Surgery, 27(7), 1682–1685. https://doi.org/10.1097/SCS.0000000000002916

Dogru, N., & Subasi, A. (2018). Traffic Accident Detection Using Random Forest Classifier. 15th Learning and Technology Conference (L&T) , 40–45.

Fedorov, A., Nikolskaia, K., Ivanov, S., Shepelev, V., & Minbaleev, A. (2019). Traffic Flow Estimation with Data from a Video Surveillance Camera. Journal of Big Data, 6(1). https://doi.org/10.1186/s40537-019-0234-z

Hidajati, N. W. (2010). Pendekatan Volume Lalu Lintas pada Setiap Perempatan dengan Metode Eselon Baris Tereduksi. Jurnal Teknik, 8(2), 68–73.

Hu, L., Bao, X., Wu, H., & Wu, W. (2020). A Study on Correlation of Traffic Accident Tendency with Driver Characters Using In-Depth Traffic Accident Data. Journal of Advanced Transportation, 2020, 1–7. https://doi.org/10.1155/2020/9084245

Krishna, Y. H., Bindu, P., Yaragani, V., Vijaya, N., & Makinde, O. D. (2020). Application of Gauss-Jordan Elimination Method in Balancing Typical Chemical Equations. International Journal of Scientific & Technology Research, 8(01), 465–468. https://doi.org/10.1021/ed074p1359

Lipschutz, Seymour., & Lipson, Marc. (2009). Linear Algebra Schaum’s Outlines (Fourth). McGraw-Hill.

Nicholson, W. K. (1995). Linear Algebra with Applications (Third). PWS Publishing Company.

Novikov, A., Novikov, I., & Shevtsova, A. (2019). Modeling of Traffic-Light Signalization Depending on the Quality of Traffic Flow in the City. Journal of Applied Engineering Science, 17(2), 175–181. https://doi.org/10.5937/jaes17-18117

Nur-E-Arefin, M. (2021). A Unique Approach to Solve the System of Linear Equations. International Journal of Innovative Technology and Interdisciplinary Sciences www .IJITIS.org, 4(1), 623–633. https://doi.org/10.15157/IJITIS.2021.4.1.623-633

Shankar, P. M. (2017). Pedagogy of Solutions to a Set of Linear Equations Using a Matlab Workbook. Computer Applications in Engineering Education, 25(3), 345–351. https://doi.org/10.1002/cae.21803

Shores, T. S. (2018). Applied Linear Algebra and Matrix Analysis (Second). Springer International Publishing. https://doi.org/10.1007/978-3-319-74748-4

Soehodho, S. (2017). Public Transportation Development and Traffic Accident Prevention in Indonesia. Dalam IATSS Research (Vol. 40, Nomor 2, hlm. 76–80). Elsevier B.V. https://doi.org/10.1016/j.iatssr.2016.05.001

Sugiyanto, G. (2017). The Cost of Traffic Accident and Equivalent Accident Number in Developing Countries (Case Study in Indonesia). ARPN Journal of Engineering and Applied Sciences, 12(2), 389–397. www.arpnjournals.com

Tian, Y., Zhang, K., Li, J., Lin, X., & Yang, B. (2018). LSTM-Based Traffic Flow Prediction with Missing Data. Neurocomputing, 318, 297–305. https://doi.org/10.1016/j.neucom.2018.08.067

Van Wageningen-Kessels, F., Van Lint, H., Vuik, K., & Hoogendoorn, S. (2015). Genealogy of Traffic Flow Models. EURO Journal on Transportation and Logistics, 4(4), 445–473. https://doi.org/10.1007/s13676-014-0045-5

Yu, H., Wu, Z., Wang, S., Wang, Y., & Ma, X. (2017). Spatiotemporal Recurrent Convolutional Networks for Traffic Prediction in Transportation Networks. Sensors, 17(7), 1–16. https://doi.org/10.3390/s17071501

Zhang, Z., He, Q., Gao, J., & Ni, M. (2018). A Deep Learning Approach for Detecting Traffic Accidents from Social Media Data. Transportation Research Part C: Emerging Technologies, 86, 580–596. https://doi.org/10.1016/j.trc.2017.11.027




DOI: http://dx.doi.org/10.31949/th.v8i1.5154

Refbacks

  • There are currently no refbacks.


Lisensi Creative Commons
Ciptaan disebarluaskan di bawah Lisensi Creative Commons Atribusi 4.0 Internasional.