MODEL EKSPONENSIAL ESTIMASI EFEK PEMBATASAN PARSIAL (PPKM) DAN VARIAN DELTA COVID-19 DI DKI JAKARTA

Retno Maharesi

Abstract


Sebagai penyakit menular yang dipicu oleh Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), kode genetika virus terus berevolusi hingga sampai pada varian dominan yang diketahui adalahvtipe Delta yang memperpanjang pandemi di seluruh dunia. Dibandingkan dengan varianlain seperti Alfa, Beta dan Omicron yang lebih baru, varian Delta adalah salah satu yang paling parah menyerang sistem imun tubuh manusia, seperti yang dapat dilihat di situs Worldometer di mana jumlah kematian harian yang tinggi di banyak negara. Kondisi ini mendorong pemerintah untuk mengambil keputusan yang sangat sulit melalui sejumlah kebijakan pembatasan mobilitas penduduk yang sangat ketat. Penelitian ini dimaksudkan untuk mengukur pengaruh jumlah tes harian, pengaruh varian delta COVID-19 dan penerapan pembatasan aktivitas parsial dan mobilitas masyarakat terhadap pertumbuhan harian kasus positif di Provinsi DKI Jakarta. Dalam penelitian ini, kasus positif harian dimodelkan sebagai fungsi pertumbuhan eksponensial basis 3yang estimasi parameternya dilakukan dengan menggunakan teknik regresi linierberganda. Hasil estimasi menunjukkan adanya pengaruh signifikan dengan taraf nyata 5 % dari varian Delta berdasarkan jumlah uji COVID-19 harian  terhadap jumlah kasus baru harian dengan faktor perkalian sekitar 2,6. Sedangkan pengaruh pembatasan sebagian aktivitas dan mobilitas masyarakat, secara kasar mampu secara signifikan dapat menekan hingga setengah dari potensi kasus positif harian yang mungkin terjadi.

Kata kunci: virus varian delta, pembatasan aktivitas komunitas, jumlah kasus positif harian, jumlah tes harian

Full Text:

PDF

References


Alsheikh, S. H., Ibrahim, K., & Alfaraj, D. (2022). The Impact of False Positive COVID-19 Result The Impact of False Positive COVID-19 Result Case Presentation. December 2021. https://doi.org/10.7759/cureus.20375

Benvenuto, D., Giovanetti, M., Vassallo, L., Angeletti, S., & Ciccozzi, M. (2020). Data in brief Application of the ARIMA model on the COVID- 2019 epidemic dataset. Data in Brief, 29, 105340. https://doi.org/10.1016/j.dib.2020.105340

Data pemantauan (2021). Diunduh dari https://corona.jakarta.go.id/id/data-pemantauan at 1 August 2021

Dixit, A., Vishnoi, S., & Paul, S. B. (2020). Adding Structure to Statistics: A Study on COVID-19 Dynamics in India. MedRxiv.

Du, Z., Hong, H., Wang, S., Ma, L., Liu, C., Bai, Y., Adam, D. C., Tian, L., Wang, L., Lau, E. H. Y., & Cowling, B. J. (2022). Reproduction Number of the Omicron Variant Triples That of the Delta Variant. Viruses, 14(4), 4–8. https://doi.org/10.3390/v14040821

Etikan, I. (2016). Comparison of Convenience Sampling and Purposive Sampling. American Journal of Theoretical and Applied Statistics, 5(1), 1. https://doi.org/10.11648/j.ajtas.20160501.11

Fadhilah, H. N., Apriliani, E., & Arif, D. K. (2021). Prediksi Penyebaran Covid-19 di Indonesia dan Jawa Timur dengan Metode Extended Kalman Filter. Limits: Journal of Mathematics and Its Applications, 18(1), 1. https://doi.org/10.12962/limits.v18i1.6933

Fetzer, T., & Graeber, T. (2021). Measuring the scientific effectiveness of contact tracing: Evidence from a natural experiment. Proceedings of the National Academy of Sciences of the United States of America, 118(33), 1–4. https://doi.org/10.1073/pnas.2100814118

Ghosh, S. (2020). Predictive model with analysis of the initial spread of COVID-19 in India. International Journal of Medical Informatics, 143. https://doi.org/10.1016/j.ijmedinf.2020.104262

Hamra, S. S. B., & Al Dallal, J. (2021). Exploring the impact of government interventions on COVID-19 pandemic spread in Kuwait. International Journal of Healthcare Information Systems and Informatics, 16(4). https://doi.org/10.4018/IJHISI.288893

Healy, B., Khan, A., Metezai, H., Blyth, I., & Asad, H. (2021). The impact of false positive COVID-19 results in an area of low prevalence. Clinical Medicine, Journal of the Royal College of Physicians of London, 21(1), E54–E56. https://doi.org/10.7861/CLINMED.2020-0839

Ma, J. (2020). Estimating epidemic exponential growth rate and basic reproduction number. Infectious Disease Modelling, 5, 129–141. https://doi.org/10.1016/j.idm.2019.12.009

Multiple regression using spss statistics (2022). Diunduh tanggal 1 August 2022 dari https://statistics.laerd.com/spss- tutorials/multiple-regression-using-spss-statistics.

Pecoraro, V., Negro, A., Pirotti, T., & Trenti, T. (2022). Estimate false-negative RT-PCR rates for SARS-CoV-2. A systematic review and meta-analysis. European Journal of Clinical Investigation, 52(2), 1–16. https://doi.org/10.1111/eci.13706

Pratikto, F. R. (2020). Prediksi Akhir Pandemi COVID-19 di Indonesia dengan Simulasi Berbasis Model Pertumbuhan Parametrik. Jurnal Rekayasa Sistem Industri, 9(2), 63–68. https://doi.org/10.26593/jrsi.v9i2.4018.63-68

Pung, R., Lin, B., Maurer-Stroh, S., Sirota, F. L., Mak, T. M., Octavia, S., Pang, J., Tan, I. B., Tan, C., Ong, B. C., Cook, A. R., Tan, D., Chua, Q. X., Chong, S. Z. R., Koh, H. F., Yap, E., Sia, P., Tan, Z. R., Lee, F. S., … Lee, V. J. (2021). Factors influencing SARS-CoV-2 transmission and outbreak control measures in densely populated settings. Scientific Reports, 11(1), 1–11. https://doi.org/10.1038/s41598-021-94463-3

Sanyaolu, A., Okorie, C., Marinkovic, A., & Patidar, R. (2020). Comorbilidad y su impacto en pacientes con COVID-19. SN Comprehensive Clinical Medicine, 2, 1069–1076.

Seber, G. a. F., & Wild, C. J. (2003). Nonlinear regression (Wiley Series in Probability and Statistics).

Simak ini rincian aturan ppkm darurat yang perlu kamu tahu (2021). https://money.kompas.com/read/2021/07/17/142854026/: diunduh tanggal 1 August 2021.

Skrivanek, S. (2009). The Use of Dummy Variables in Regression Analysis. MoreSteam.Com LLC, 6, 131–142.

Syafarina, I., Wirahman, T., Iryanto, S. B., & Latifah, A. L. (2022). Epidemic Data Analysis of Three Variants of COVID-19 Spread in Indonesia. Jurnal Ilmu Komputer Dan Informasi (Journal of Computer Science and Information), 15(1), 47–54. http://dx.doi.org/10.21609/jiki.v15i1.1055

Walpole, R.E., Myers, R.H., Myers, S.L., Ye., K. (2016). Probability and statistics for engineers and scientists author, Pearson.

Wahyudi, P. (2021). 4. Prediksi puncak Covid-19 model SIR. JURNAL Teknologi Dan Sistem Komputer, 9(1), 49–55.

Weiss Sir Ronald Ross, H. (2013). The SIR model and the Foundations of Public Health. MATerials MATemà tics Volum, 17(3), 1887–1097. www.mat.uab.cat/matmat

World Health Organization. (2020). Contact tracing in the context of COVID-19. WHO Guidelines: Contact Tracing in the Context of COVID-19, 2019(May, 10), 1–7. https://www.who.int/publications-detail/contact-tracing-in-the-context-of-covid-19

Wu, K., Darcet, D., Wang, Q., & Sornette, D. (2020). Generalized logistic growth modeling of the COVID-19 outbreak: comparing the dynamics in the 29 provinces in China and in the rest of the world. Nonlinear Dynamics, 101(3), 1561–1581. https://doi.org/10.1007/s11071-020-05862-6




DOI: http://dx.doi.org/10.31949/th.v7i2.4433

Refbacks

  • There are currently no refbacks.


Lisensi Creative Commons
Ciptaan disebarluaskan di bawah Lisensi Creative Commons Atribusi 4.0 Internasional.